Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Cell Rep ; 42(12): 113488, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-37995189

RESUMO

Response to threatening environmental stimuli requires detection and encoding of important environmental features that dictate threat. Aversive events are highly salient, which promotes associative learning about stimuli that signal this threat. The nucleus accumbens is uniquely positioned to process this salient, aversive information and promote motivated output, through plasticity on the major projection neurons in the brain area. We describe a nucleus accumbens core local circuit whereby excitatory plasticity facilitates learning and recall of discrete aversive cues. We demonstrate that putative nucleus accumbens substance P release and long-term excitatory plasticity on dopamine 2 receptor-expressing projection neurons are required for cue-dependent fear learning. Additionally, we find that fear learning and recall is dependent on distinct projection neuron subtypes. Our work demonstrates a critical role for nucleus accumbens substance P in cue-dependent aversive learning.


Assuntos
Sinais (Psicologia) , Núcleo Accumbens , Núcleo Accumbens/fisiologia , Aprendizagem da Esquiva , Substância P , Receptores Dopaminérgicos
3.
bioRxiv ; 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36798245

RESUMO

Response to threatening environmental stimuli requires detection and encoding of important environmental features that dictate threat. Aversive events are highly salient which promotes associative learning about stimuli that signal this threat. The nucleus accumbens is uniquely positioned to process this salient, aversive information and promote motivated output, through plasticity on the major projection neurons in the brain area. We uncovered a nucleus accumbens core local circuit whereby excitatory plasticity facilitates learning and recall of discrete aversive cues. We demonstrate that putative nucleus accumbens substance P release and long-term excitatory plasticity on dopamine 2 receptor expressing projection neurons is required for cue-dependent fear learning. Additionally, we found fear learning and recall were dependent on distinct projection-neuron subtypes. Our work demonstrates a critical role for Nucleus Accumbens substance P in cue-dependent aversive learning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...